2DM研究文章|Toward ultrahigh thermal conductivity graphene films

24 3月 2023 gabriels
With increasing demands of high-performance and functionality, electronics devices generate a great amount of heat. Thus, efficient heat dissipation is crucially needed. Owing to its extremely good thermal conductivity, graphene is an interesting candidate for this purpose. In this paper, a two-step temperature-annealing process to fabricate ultrahigh thermal conductive graphene assembled films (GFs) is proposed. The thermal conductivity of the obtained GFs was as high as 3826 ± 47 W m−1 K−1. Extending the time of high-temperature annealing significantly improved the thermal performance of the GF. Structural analyses confirmed that the high thermal conductivity is caused by the large grain size, defect-free stacking, and high flatness, which are beneficial for phonon transmission in the carbon lattice. The turbostratic stacking degree decreased with increasing heat treatment time. However, the increase in the grain size after long heat treatment had a more pronounced effect on the phonon transfer of the GF than that of turbostratic stacking. The developed GFs show great potential for efficient thermal management in electronics devices.


Toward ultrahigh thermal conductivity graphene films

Sihua Guo, Shujin Chen, Amos Nkansah, Abdelhafid Zehri, Murali Murugesan, Yong Zhang, Yan Zhang, Chen Yu, Yifeng Fu, Markus Enmark, Jin Chen, Xinfeng Wu, Wei Yu and Johan Liu


  • 张勇,上海大学
  • Johan Liu,上海大学/瑞典查尔姆斯理工大学/上海第二工业大学


2D Materials

  • 2021年影响因子:6.861  Citescore:11.6
  • 2D Materials(2DM)是一本重要的高质量交叉学科期刊,将基础研究与迅速发展的新材料及应用汇集在一起。期刊从多学科的视角出发,力争涵盖石墨烯研究的各个方面,及其它二维材料的相关研究。文章内容包括:石墨烯和石墨烯衍生材料;硅和锗/锗烷氮化硼;二维拓扑绝缘子;复合氧化物;复合材料;新型二维分层结构。