JPhys Materials开放问题征稿|人工智能能设计出真正新颖的材料吗?

系列介绍

问题详情

Aron asks: Can artificial intelligence design materials that are truly novel?
Dimensions to consider:
a. Metrics for quantifying novelty in chemical compositions and crystal structures.
b. Inverse design, including the use of large language models and other generative techniques.
c. Data-driven screening and closed-loop automated experimentation.
We invite you to share your views by submitting your work in a format that best suits your findings. This includes:
- Perspective articles that provide viewpoints on the state of the art, challenges to be addressed, and/or an outlook on the future;
- Original research papers reporting new results that directly speak to the question;
- Topical review papers that provide a survey of recent and significant developments in the field.
投稿流程
本系列将包括受邀投稿,但也向所有感兴趣的人开放,以收集该领域研究人员对这一问题的代表性观点。
本系列文章与JPhys Materials期刊常规文章遵循相同的审稿流程和内容标准,并采用同样的投稿模式。
有关准备文章及投稿的详细信息,可以参阅IOPscience页面的作者指南。
作者可登入期刊主页进行在线投稿,先选择“文章类型”,然后在下拉框中选择“Open Questions in Materials Science”。
投稿截止日期:2025年10月31日。
期刊介绍

- 2023年影响因子:4.9 Citescore:10.3
- JPhys Materials(JPMATER)是一本新出版的开放获取期刊,涵盖材料研究中最重要和最激动人心的进展,着重关注跨学科和多学科研究,包括:生物和生物医学材料;碳材料;电子材料;能源和环境材料;玻璃和非晶态材料;磁性材料;金属和合金;超材料;纳米;有机材料;光子材料;聚合物和有机化合物;半导体;智能材料;软物质;超导体;表面、界面和薄膜等。