JPhys Materials研究路线图|2024二维拓扑绝缘体路线图

17 6月 2024 gabriels
2D topological insulators promise novel approaches towards electronic, spintronic, and quantum device applications. This is owing to unique features of their electronic band structure, in which bulk-boundary correspondences enforces the existence of 1D spin–momentum locked metallic edge states—both helical and chiral—surrounding an electrically insulating bulk. Forty years since the first discoveries of topological phases in condensed matter, the abstract concept of band topology has sprung into realization with several materials now available in which sizable bulk energy gaps—up to a few hundred meV—promise to enable topology for applications even at room-temperature. Further, the possibility of combining 2D TIs in heterostructures with functional materials such as multiferroics, ferromagnets, and superconductors, vastly extends the range of applicability beyond their intrinsic properties. While 2D TIs remain a unique testbed for questions of fundamental condensed matter physics, proposals seek to control the topologically protected bulk or boundary states electrically, or even induce topological phase transitions to engender switching functionality. Induction of superconducting pairing in 2D TIs strives to realize non-Abelian quasiparticles, promising avenues towards fault-tolerant topological quantum computing. This roadmap aims to present a status update of the field, reviewing recent advances and remaining challenges in theoretical understanding, materials synthesis, physical characterization and, ultimately, device perspectives.


文章介绍

2024 roadmap on 2D topological insulators

Bent Weber, Michael S Fuhrer, Xian-Lei Sheng, Shengyuan A Yang, Ronny Thomale, Saquib Shamim, Laurens W Molenkamp, David Cobden, Dmytro Pesin, Harold J W Zandvliet, Pantelis Bampoulis, Ralph Claessen, Fabian R Menges, Johannes Gooth, Claudia Felser, Chandra Shekhar, Anton Tadich, Mengting Zhao, Mark T Edmonds, Junxiang Jia, Maciej Bieniek, Jukka I Väyrynen, Dimitrie Culcer, Bhaskaran Muralidharan and Muhammad Nadeem

通讯作者:

  • Bent Weber,新加坡南洋理工大学
  • Michael S Fuhrer,澳大利亚蒙纳士大学

期刊介绍

JPhys Materials

  • 2022年影响因子:4.8  Citescore:9.8
  • JPhys Materials(JPMATER)是一本新出版的开放获取期刊,涵盖材料研究中最重要和最激动人心的进展,着重关注跨学科和多学科研究,包括:生物和生物医学材料;碳材料;电子材料;能源和环境材料;玻璃和非晶态材料;磁性材料;金属和合金;超材料;纳米;有机材料;光子材料;聚合物和有机化合物;半导体;智能材料;软物质;超导体;表面、界面和薄膜等。