JMM编辑优选:面向医学成像应用的压电微机械超声换能器(PMUT)声匹配策略研究

28 May 2025 gabriels
本篇研究来自天津大学庞慰、牛鹏飞和北京化工大学王茁晨课题组。在本研究中,我们利用解析方程,有限元仿真及实验论证,系统地构建了PMUT匹配层设计策略,揭示了PMUT灵敏度与带宽之间的调制效应:即匹配层无法同步改善PMUT的灵敏度和带宽。本研究明确提出了PMUT匹配层的材料属性选择标准及结构参数优化方法,为高性能PMUT的设计以及应用提供了理论和实验依据。

文章介绍

Acoustic matching strategy of piezoelectric micromachined ultrasound transducer towards medical imaging applicationXingli Xu(徐兴利), Wei Wei(魏唯), Yuewu Gong(龚跃武), Zhuochen Wang(王茁晨), Wanli Yang(杨万里), Pengfei Niu(牛鹏飞) and Wei Pang(庞慰)

 

通讯作者:

  • 王茁晨,北京化工大学
  • 牛鹏飞,天津大学
  • 庞慰,天津大学

 

研究背景:

随着便携式和可穿戴超声成像设备的快速发展,压电微机械超声换能器(PMUT)因其低功耗、小尺寸和与CMOS电路高度集成等优势而备受关注。声学匹配层是超声换能器的重要组成部分,具有保护器件、优化性能的功能。传统压电陶瓷换能器的匹配层设计理论已较成熟,其声波在陶瓷内部产生,通过匹配层高效传递至人体组织,只需根据陶瓷与人体组织的声阻抗即可设计出最优匹配层。然而,PMUT依靠薄膜弯曲振动产生声波,声波直接产生于器件表面,因此传统设计理论无法适用。此外,匹配层材料的密度、压缩波速及剪切波速对PMUT的振动特性有重要影响,使得PMUT匹配层设计的复杂性显著增加。目前尚缺乏针对PMUT的系统化匹配层设计方法,严重制约了PMUT性能的提升。

为解决这一问题,本研究深入探索了PMUT匹配层材料选择与尺寸优化的规律,首次提出了针对PMUT的系统化匹配层设计框架,以有效提升PMUT性能,推动其在医疗超声成像等领域的应用。

 

研究内容:

本研究中,我们建立了PMUT匹配层的机械-声耦合模型,推导出匹配层声波穿透效率的解析公式,并利用有限元仿真方法验证了理论的正确性。图1展示的结果揭示了PMUT灵敏度与带宽的内在权衡机制——匹配层难以同时优化这两项性能。

图1

 

进一步研究发现,匹配层不仅影响声波传递效率,也显著影响PMUT薄膜自身的振动特性(如位移、谐振频率等)。我们系统分析了匹配层密度、压缩波速和剪切波速对PMUT性能的影响(图2)。结果显示,剪切波速越高,匹配层材料硬度越大,导致PMUT性能严重下降,因此适合PMUT的匹配层应选择剪切波速接近0的软质材料(如橡胶类材料)。此外,匹配层密度增加会降低PMUT的频率与性能,而压缩波速对性能没有负面影响,且性能随压缩波速提高而提升。因此,低密度、高压缩波速的匹配层更有利于获得高灵敏度PMUT。

图2

 

具体材料分析(图3)表明,硅橡胶类材料作为匹配层时可显著提升带宽(2X),更适合高带宽应用场景;而Polybutadiene因具有较高声阻抗和较低声衰减,更适用于高灵敏度应用场景。我们以厚度为1/4波长的PDMS匹配层为例,通过实验验证了PMUT匹配层设计方法的有效性。

 

图3

 

我们利用超声相控阵成像检验匹配层对实际应用的影响(图4)。实验表明,高带宽的匹配层使PMUT的成像分辨率显著提升,使其能更清晰地展现复杂目标的细节。

图4

 

本研究首次明确了PMUT匹配层设计的材料选择与尺寸设计准则,为实现高性能PMUT提供了关键的设计依据,对PMUT技术的产业化应用具有重要指导意义。


作者介绍

牛鹏飞  副教授

天津大学

  • 牛鹏飞,天津大学副教授,从主要从事面向成像应用的压电微机械超声换能器和可穿戴电化学汗液传感平台及其耦合系统的研究。

王茁晨  副教授  

北京化工大学

  • 王茁晨,北京化工大学副教授,主要从事新型超声换能器、超声系统及其在医学成像和无损检测领域的应用的研究。

庞慰  教授  

天津大学

  • 庞慰,天津大学教授,主要从事谐振器、滤波器、振荡器等多种MEMS器件的开发和研究。

期刊介绍

Journal of Micromechanics and Microengineering

  • 2023年影响因子:2.4  Citescore:4.5
  • Journal of Micromechanics and Microengineering(JMM)是该领域的领军期刊,涵盖了微型机电结构、设备和系统,以及微观力学与微机电的各个方面。JMM专注于制造和集成技术方面的原创性研究,推广新的制造技术及设备。该期刊的研究范围包括微型工程和纳米工程学,涉及物理、化学、电子和生物等领域,也发表关于硅和非硅材料的制造和集成方面的最新研究。