JPhys Materials特刊征稿|聚焦神经形态计算的材料和设备

16 8月 2023 gabriels

特刊详情

客座编辑

  • 杨玉超,北京大学
  • 唐建石,清华大学
  • 朱小健,中国科学院宁波材料技术与工程研究所
  • Yiyang Li,美国密歇根大学

主题范围

Neuromorphic materials and devices that emulate the critical components and functions in biological neural networks
Inspired by human brain, neuromorphic computing emerges as a promising paradigm to break the von Neumann bottleneck and enable energy-efficient information processing using electronic devices that emulate the critical components and functions in biological neural networks. This is a highly interdisciplinary and exciting research field that warrants a focus issue to disseminate the latest advances in neuromorphic materials and devices. Technical topics of interests include but are not limited to:

  • Material synthesis and characterizations for neuromorphic computing
  • Bio-inspired nanoionic materials and devices for neuromorphic computing
  • High-performance neuromorphic computing based on phase-transition materials
  • Energy-efficient neuromorphic devices designed by spintronic materials
  • In-sensor neuromorphic computing using optoelectronic materials
  • Flexible neuromorphic devices enabled by organic-inorganic hybrid materials

 

投稿流程

特刊文章与JPhys Materials期刊常规文章遵循相同的审稿流程和内容标准,并采用同样的投稿模式。

有关准备文章及投稿的详细信息,可以参阅IOPscience页面的作者指南。

作者可登入期刊主页进行在线投稿,先选择“文章类型”,然后在“选择特刊”的下拉框中选择“Focus issue on Materials and Devices for Neuromorphic Computing”。

投稿截止日期:2023年12月15日。


期刊介绍

JPhys Materials

  • 2022年影响因子:4.8  Citescore:9.8
  • JPhys Materials(JPMATER)是一本新出版的开放获取期刊,涵盖材料研究中最重要和最激动人心的进展,着重关注跨学科和多学科研究,包括:生物和生物医学材料;碳材料;电子材料;能源和环境材料;玻璃和非晶态材料;磁性材料;金属和合金;超材料;纳米;有机材料;光子材料;聚合物和有机化合物;半导体;智能材料;软物质;超导体;表面、界面和薄膜等。