
《物理世界》2021年度突破:两宏观物体的量子纠缠现象
《物理世界》(Physics World)评选的物理学2021年度突破颁给了两支独立的团队,他们分别实现了两宏观振动鼓面的纠缠现象,并由此推进了我们对量子系统与经典系统间差别的认识。这两大赢家分别是芬兰阿尔托大学与澳大利亚新南威尔士大学的米卡·斯兰帕( Mika Sillanpää)及其同事,以及美国国家标准与技术研究所(US National Institute of Standards and Technology, NIST)约翰·托伊费尔(John Teufel )和 施罗密·科特勒(Shlomi Kotler)领导的一支团队。 除此之外,《物理世界》还评选出了其他9项成果,共同作为2021年的物理学10大年度突破。 敲鼓:这张彩色电子显微镜图像展示了美国国家标准与技术研究所科研人员使用的两枚铝鼓面。 量子技术在过去的20年里取得了长足进步,如今,物理学家们已经可以实现并操控那些曾经只能在思想实验领域中存在的物理系统。其中一个特别吸引人的研究方向,就是量子物理学与经典物理学之间的模糊边界。过去,我们可以通过尺度大小清晰地区分它们:像光子和电子这样的微观物体自然属于量子物理学范畴;像台球这样的宏观物体则属于经典物理学领域。 在过去10年里,物理学家们通过直径在10微米左右的鼓状机械谐振器提升了量子的定义极限。与电子和光子不同,这些鼓面是通过标准微机械加工技术制造出来的宏观物体,在电子显微镜中就像是台球那样的实体(参见上图)。不过,虽然这类谐振器并非像微观粒子那样的“无形”之物,但研究人员却能观测到它们具有量子特性,比如,托伊费尔及其同事就在2017年成功地让这种设备进入量子基态。 今年,托伊费尔和科特勒领导的团队,以及斯兰帕领导的团队更进一步,率先在量子力学层面上实现了两枚此类鼓面的纠缠现象。这两支团队采取的方式并不相同。阿尔托/堪培拉团队使用了一个特别挑选的共振频率消除系统噪声——如果不这么做,噪声会干扰鼓面的纠缠态。而美国国家标准与技术研究所的团队实现的纠缠态则类似一个双量子位门。在这种情形下,纠缠态的形式取决于鼓面的初始状态。 这两支团队都克服了巨大的实验障碍,他们的不懈努力将为我们打开使用纠缠共振器的大门——我们可以在量子网络中使用这类纠缠共振器,将其作为量子感应器或结点。毫无疑问,这项工作完全算得上是2015年之后最重要的与量子相关的物理学年度突破。 |评选标准| 5名《物理世界》编辑从今年发表在网站上的近600项研究进展中评选出了今年的年度突破以及其余9大突破。除了必须在2021年《物理世界》网站上报导过之外,入选候选名单的研究还必须满足以下标准: 是物理学知识或认知的重大进展。 对于科学进步或现实应用具有重大意义。 物理世界》读者对其拥有极大兴趣。 以下就是今年《物理世界》评选出的10大物理学突破中的其余9项(排名不分先后): 恢复瘫痪者语言能力 “三思而后言”:研究人员大卫·摩西正在开展临床试验。试验过程中,一枚神经假肢记录了被试试图说出词语或句子时的大脑额叶活动。 加州大学旧金山分校大卫·摩西(David Moses)、肖恩· 梅茨格(Sean Metzger)及其同事开发了一种语言神经假肢。这种工具可以将重度瘫患者的大脑信号翻译成文字打在屏幕上,从而允许他们用语言交流。试验过程中,这支研究团队将一个高密度电极阵列植入被试大脑,记录与语言形成相关的多个大脑皮层区域的电信号。神经假肢系统可以从皮层活动记录结果中认证出单词库(总共50个常用单词)中的相应单词。借助这个单词库,被试就能说出成百上千个短句。这项技术的解码速率中值是每分钟15.2词——一个相当值得期待的成果,要知道,被试在电脑界面上打出自己想说的话的速度通常只有这个的1/3左右。 同时发射30束激光,整体表现为单一相干光源 德国维尔茨堡大学的塞巴斯蒂安·克兰伯特(Sebastian Klembt )和以色列理工学院的莫迪凯·塞格夫(Mordechai Segev )及其同事开发了一个由30台垂直腔面激光发射器(VCSELs)组成的阵列。这30台发射器一起发射激光时,整体表现为单一相干光源。这项成就为后续的大规模、高功率应用铺平了道路。这个研究团队利用拓扑学原理确保阵列中每台发射器发射的激光都会流经其他所有发射器,这样一来,30束激光的频率就会保持一致。2018年,塞格夫及其合作者也曾设计过一台类似的设备,但功率有限,今年的这项新成就克服了这个困难,并且在原理上可以规模化应用,也即让成百上千个独立发射器发射的激光整体表现为单一光源。 量化波粒二象性 韩国基础科学研究所的Tai Hyun Yoon、Minhaeng Cho,美国史蒂文斯理工学院的钱晓峰(Xiaofeng Qian,音译)和美国德州农工大学的 吉里什·阿加瓦尔(Girish Agarwal)通过理论和实验,量化了光子的“波动度”和“粒子度”,并且证明,这两项性质都与光子源的纯度相关。Yoon和Cho在实验中严格地控制两个铌酸锂晶体发出的光子对(“信号光子”和“闲置光子”)的量子态。他俩通过独立改变每个晶体释放光子的概率以及一个 钱和阿加瓦尔在2020年率先提出的简单数学表达式证明了所谓的“光子源纯度”与能否在实验中看到干涉条纹(一种波动属性)以及路径不可区分现象(一种粒子属性)有关。这项成果在量子信息领域大有作用,并且能够让我们重新认识互补性原理——所谓“互补性”,最早是由量子理论先驱尼尔斯·玻尔在20世纪初提出的,这个概念是说,量子物体有时表现得像波,有时表现得像粒子。 激光聚变里程碑 燃烧美元的问题:美国国家点火装置总耗资已达35亿美元,现在,科学家们终于接近实现点火的终极目标了——聚变反应产生的能量不小于输入的激光携带的能量 在位于美国加利福尼亚州的美国国家点火装置(NIF)工作的奥马尔·哈利卡恩(Omar Hurricane)、安妮·克里特切尔(Annie Kritcher)、阿莱克斯·兹尔斯特拉( Alex...